
Tcl_CreateTrace(3) Tcl_CreateTrace(3)

NAME
Tcl_CreateTrace, Tcl_DeleteTrace − arrange for command execution to be traced

SYNOPSIS
#include <tcl.h>

Tcl_Trace
Tcl_CreateTrace(interp, level, proc, clientData)

Tcl_DeleteTrace(interp, trace)

ARGUMENTS
Tcl_Interp *interp (in) Interpreter containing command to be traced or untraced.

int level (in) Only commands at or below this nesting level will be
traced. 1 means top-level commands only, 2 means top-
level commands or those that are invoked as immediate
consequences of executing top-level commands (proce-
dure bodies, bracketed commands, etc.) and so on.

Tcl_CmdTraceProc *proc (in) Procedure to call for each command that’s executed. See
below for details on the calling sequence.

ClientData clientData (in) Arbitrary one-word value to pass to proc.

Tcl_Trace trace (in) Token for trace to be removed (return value from previ-
ous call to Tcl_CreateTrace).

DESCRIPTION
Tcl_CreateTrace arranges for command tracing. From now on, proc will be invoked before Tcl calls com-
mand procedures to process commands in interp. The return value from Tcl_CreateTrace is a token for
the trace, which may be passed to Tcl_DeleteTrace to remove the trace. There may be many traces in
effect simultaneously for the same command interpreter.

Proc should have arguments and result that match the type Tcl_CmdTraceProc:

typedef void Tcl_CmdTraceProc(
ClientData clientData,
Tcl_Interp *interp,
int level,
char *command,
Tcl_CmdProc *cmdProc,
ClientData cmdClientData,
int argc,
char *argv[]));

The clientData and interp parameters are copies of the corresponding arguments given to Tcl_Create-
Trace. ClientData typically points to an application-specific data structure that describes what to do when
proc is invoked. Level gives the nesting level of the command (1 for top-level commands passed to
Tcl_Eval by the application, 2 for the next-level commands passed to Tcl_Eval as part of parsing or inter-
preting level-1 commands, and so on). Command points to a string containing the text of the command,
before any argument substitution. CmdProc contains the address of the command procedure that will be
called to process the command (i.e. the proc argument of some previous call to Tcl_CreateCommand) and
cmdClientData contains the associated client data for cmdProc (the clientData value passed to Tcl_Create-
Command). Argc and argv give the final argument information that will be passed to cmdProc, after

1



Tcl_CreateTrace(3) Tcl_CreateTrace(3)

command, variable, and backslash substitution. Proc must not modify the command or argv strings.

Tracing will only occur for commands at nesting level less than or equal to the level parameter (i.e. the level
parameter to proc will always be less than or equal to the level parameter to Tcl_CreateTrace).

Calls to proc will be made by the Tcl parser immediately before it calls the command procedure for the
command (cmdProc). This occurs after argument parsing and substitution, so tracing for substituted com-
mands occurs before tracing of the commands containing the substitutions. If there is a syntax error in a
command, or if there is no command procedure associated with a command name, then no tracing will
occur for that command. If a string passed to Tcl_Eval contains multiple commands (bracketed, or on dif-
ferent lines) then multiple calls to proc will occur, one for each command. The command string for each of
these trace calls will reflect only a single command, not the entire string passed to Tcl_Eval.

Tcl_DeleteTrace removes a trace, so that no future calls will be made to the procedure associated with the
trace. After Tcl_DeleteTrace returns, the caller should never again use the trace token.

KEYWORDS
command, create, delete, interpreter, trace

2


