
Tcl_Eval(3) Tcl_Eval(3)

NAME
Tcl_Eval, Tcl_VarEval, Tcl_EvalFile, Tcl_GlobalEval − execute Tcl commands

SYNOPSIS
#include <tcl.h>

int
Tcl_Eval(interp, cmd, flags, termPtr)

int
Tcl_VarEval(interp, string, string, ... (char *) NULL)

int
Tcl_EvalFile(interp, fileName)

int
Tcl_GlobalEval(interp, cmd)

ARGUMENTS
Tcl_Interp *interp (in) Interpreter in which to execute the command. String result will be

stored in interp->result.

char *cmd (in) Command (or sequence of commands) to execute. Must be in
writable memory (Tcl_Eval makes temporary modifications to the
command).

int flags (in) Either TCL_BRACKET_TERM or 0. If 0, then Tcl_Eval will pro-
cess commands from cmd until it reaches the null character at the
end of the string. If TCL_BRACKET_TERM, then Tcl_Eval will
process comands from cmd until either it reaches a null character or
it encounters a close bracket that isn’t backslashed or enclosed in
braces, at which point it will return. Under normal conditions, flags
should be 0.

char **termPtr (out) If termPtr is non-NULL, Tcl_Eval fills in *termPtr with the address
of the character just after the last one in the last command success-
fully executed (normally the null character at the end of cmd). If an
error occurs in the first command in cmd, then *termPtr will be set
to cmd.

char *string (in) String forming part of Tcl command.

char *fileName (in) Name of file containing Tcl command string.

DESCRIPTION
All four of these procedures execute Tcl commands. Tcl_Eval is the core procedure: it parses commands
from cmd and executes them in order until either an error occurs or Tcl_Eval reaches a terminating charac-
ter (’]’ or ’\0’, depending on the value of flags). The return value from Tcl_Eval is one of the Tcl return
codes TCL_OK, TCL_ERROR, TCL_RETURN, TCL_BREAK, or TCL_CONTINUE, and
interp->result will point to a string with additional information (result value or error message). This return
information corresponds to the last command executed from cmd.

Tcl_VarEval takes any number of string arguments of any length, concatenates them into a single string,
then calls Tcl_Eval to execute that string as a Tcl command. It returns the result of the command and also
modifies interp->result in the usual fashion for Tcl commands. The last argument to Tcl_VarEval must be
NULL to indicate the end of arguments.

1

Tcl_Eval(3) Tcl_Eval(3)

Tcl_EvalFile reads the file given by fileName and evaluates its contents as a Tcl command by calling
Tcl_Eval. It returns a standard Tcl result that reflects the result of evaluating the file. If the file couldn’t be
read then a Tcl error is returned to describe why the file couldn’t be read.

Tcl_GlobalEval is similar to Tcl_Eval except that it processes the command at global level. This means
that the variable context for the command consists of global variables only (it ignores any Tcl procedure

that is active). This produces an effect similar to the Tcl command ‘‘uplevel 0’’.

During the processing of a Tcl command it is legal to make nested calls to evaluate other commands (this is
how conditionals, loops, and procedures are implemented). If a code other than TCL_OK is returned from
a nested Tcl_Eval invocation, then the caller should normally return immediately, passing that same return
code back to its caller, and so on until the top-level application is reached. A few commands, like for, will
check for certain return codes, like TCL_BREAK and TCL_CONTINUE, and process them specially
without returning.

Tcl_Eval keeps track of how many nested Tcl_Eval invocations are in progress for interp. If a code of
TCL_RETURN, TCL_BREAK, or TCL_CONTINUE is about to be returned from the topmost
Tcl_Eval invocation for interp, then Tcl_Eval converts the return code to TCL_ERROR and sets
interp->result to point to an error message indicating that the return, break, or continue command was
invoked in an inappropriate place. This means that top-level applications should never see a return code
from Tcl_Eval other then TCL_OK or TCL_ERROR.

KEYWORDS
command, execute, file, global, interpreter, variable

2

