
Tcl_Eval(3) Tcl_Eval(3)

NAME
Tcl_Eval, Tcl_VarEval, Tcl_EvalFile, Tcl_GlobalEval − execute Tcl commands

SYNOPSIS
#include <tcl.h>

int
Tcl_Eval(interp, cmd, flags, termPtr)

int
Tcl_VarEval(interp, string, string, ... (char *) NULL)

int
Tcl_EvalFile(interp, fileName)

int
Tcl_GlobalEval(interp, cmd)





ARGUMENTS
Tcl_Interp *interp (in) Interpreter in which to execute the command. String result will be

stored in interp->result.

char *cmd (in) Command (or sequence of commands) to execute. Must be in
writable memory (Tcl_Eval makes temporary modifications to the
command).

int flags (in) Either TCL_BRACKET_TERM or 0. If 0, then Tcl_Eval will pro-
cess commands from cmd until it reaches the null character at the
end of the string. If TCL_BRACKET_TERM, then Tcl_Eval will
process comands from cmd until either it reaches a null character or
it encounters a close bracket that isn’t backslashed or enclosed in
braces, at which point it will return. Under normal conditions, flags
should be 0.

char **termPtr (out) If termPtr is non-NULL, Tcl_Eval fills in *termPtr with the address
of the character just after the last one in the last command success-
fully executed (normally the null character at the end of cmd). If an
error occurs in the first command in cmd, then *termPtr will be set
to cmd.

char *string (in) String forming part of Tcl command.

char *fileName (in) Name of file containing Tcl command string.

DESCRIPTION
All four of these procedures execute Tcl commands. Tcl_Eval is the core procedure: it parses commands
from cmd and executes them in order until either an error occurs or Tcl_Eval reaches a terminating charac-
ter (’]’ or ’\0’, depending on the value of flags). The return value from Tcl_Eval is one of the Tcl return
codes TCL_OK, TCL_ERROR, TCL_RETURN, TCL_BREAK, or TCL_CONTINUE, and
interp->result will point to a string with additional information (result value or error message). This return
information corresponds to the last command executed from cmd.

Tcl_VarEval takes any number of string arguments of any length, concatenates them into a single string,
then calls Tcl_Eval to execute that string as a Tcl command. It returns the result of the command and also
modifies interp->result in the usual fashion for Tcl commands. The last argument to Tcl_VarEval must be
NULL to indicate the end of arguments.

1

Tcl_Eval(3) Tcl_Eval(3)

Tcl_EvalFile reads the file given by fileName and evaluates its contents as a Tcl command by calling
Tcl_Eval. It returns a standard Tcl result that reflects the result of evaluating the file. If the file couldn’t be
read then a Tcl error is returned to describe why the file couldn’t be read.

Tcl_GlobalEval is similar to Tcl_Eval except that it processes the command at global level. This means
that the variable context for the command consists of global variables only (it ignores any Tcl procedure





that is active). This produces an effect similar to the Tcl command ‘‘uplevel 0’’.

During the processing of a Tcl command it is legal to make nested calls to evaluate other commands (this is
how conditionals, loops, and procedures are implemented). If a code other than TCL_OK is returned from
a nested Tcl_Eval invocation, then the caller should normally return immediately, passing that same return
code back to its caller, and so on until the top-level application is reached. A few commands, like for, will
check for certain return codes, like TCL_BREAK and TCL_CONTINUE, and process them specially
without returning.

Tcl_Eval keeps track of how many nested Tcl_Eval invocations are in progress for interp. If a code of
TCL_RETURN, TCL_BREAK, or TCL_CONTINUE is about to be returned from the topmost
Tcl_Eval invocation for interp, then Tcl_Eval converts the return code to TCL_ERROR and sets
interp->result to point to an error message indicating that the return, break, or continue command was
invoked in an inappropriate place. This means that top-level applications should never see a return code
from Tcl_Eval other then TCL_OK or TCL_ERROR.

KEYWORDS
command, execute, file, global, interpreter, variable

2

