Tcl_Fork(3) Tcl_Fork(3)

NAME
Tcl_Fork, Tcl_WaitPids, Tcl_DetachPids — manage child processes

SYNOPSIS
#include <tcl.h>

int

Tcl_Fork()

int

Tcl_WaitPids(numPids, pidPtr, statusPtr)

int
Tcl_DetachPids(numPids, pidPtr)
ARGUMENTS
int numPids (in) Number of process ids contained in the array pointed to by pidPtr.
int *pidPtr (in) Address of array containing numPids process ids.

int *statusPtr (out) Address of place to store status returned by exited/suspended process.

DESCRIPTION
These procedures keep track of child processes in order to make it easier for one application to manage sev-
eral children. If an application uses the UNIX fork and wait kernel calls directly, problems occur in situa-
tions like the following:

[1] One part of an application creates child C1. It plans to let the child run in background, then later
wait for it to complete.

[2] Some other part of the application creates another child C2, not knowing anything about C1.
[3] The second part of the application uses wait to wait for C2 to complete.
[4] C1 completes before C2, so C1 is returned by the wait kernel call.

[5] The second part of the application doesn’t recognize C1, so it ignores it and calls wait again. This
time C2 completes.

[6] The first part of the application eventually decides to wait for its child to complete. When it calls
wait there are no children left, so wait returns an error and the application never gets to examine
the exit status for C1.

The procedures Tcl_Fork, Tcl_WaitPids, and Tcl_DetachPids get around this problem by keeping a table
of child processes and their exit statuses. They also provide a more flexible waiting mechanism than the
wait kernel call. Tcl-based applications should never call fork and wait directly; they should use
Tcl_Fork, Tcl_WaitPids, and Tcl_DetachPids.

Tcl_Fork calls fork and returns the result of the fork kernel call. If the fork call was successful then
Tcl_Fork also enters the new process into its internal table of child proceses. If fork returns an error then
Tcl_Fork returns that same error.

Tcl_WaitPids calls wait repeatedly until one of the processes in the pidPtr array has exited or been killed
or suspended by a signal. When this occurs, Tcl_WaitPids returns the process identifier for the process
and stores its wait status at *statusPtr. If the process no longer exists (it exited or was killed by a signal),
then Tcl_WaitPids removes its entry from the internal process table. If wait returns a process that isn’t in
the pidPtr array, Tcl_WaitPids saves its wait status in the internal process table and calls wait again. If one
of the processes in the pidPtr array has already exited (or suspended or been killed) when Tcl_WaitPids is
called, that process and its wait status are returned immediately without calling wait.

Tcl_Fork(3) Tcl_Fork(3)

Tcl_WaitPids provides two advantages. First, it allows processes to exit in any order, and saves their wait
statuses. Second, it allows waiting on a number of processes simultaneously, returning when any of the
processes is returned by wait.

Tcl_DetachPids is used to indicate that the application no longer cares about the processes given by the
pidPtr array and will never use Tcl_WaitPids to wait for them. This occurs, for example, if one or more
children are to be executed in background and the parent doesn’t care whether they complete successfully.
When Tcl_DetachPids is called, the internal process table entries for the processes are marked so that the
entries will be removed as soon as the processes exit or are killed.

If none of the pids passed to Tcl_WaitPids exists in the internal process table, then -1 is returned and errno
is set to ECHILD. If a wait kernel call returns an error, then Tcl_WaitPids returns that same error. If a
wait kernel call returns a process that isn’t in the internal process table, Tcl_WaitPids panics and aborts
the application. If this situation occurs, it means that a process has been created without calling Tcl_Fork
and that its exit status is about to be lost.

Tcl_WaitPids defines wait statuses to have type int, which is correct for POSIX and many variants of
UNIX. Some BSD-based UNIX systems still use type union wait for wait statuses; it should be safe to cast
a pointer to a union wait structure to (int *) before passing it to Tcl_WaitPids as in the following code:

union wait status;
int pidl, pid2;

pid2 = Tcl_WaitPids(1, & pidl, (int *) & status);

KEYWORDS
background, child, detach, fork, process, status, wait

OOooooOoOooooooooooooooooooooOo4an

