Tcl_Hash(3)

Tcl_Hash(3)

NAME

Tcl_InitHashTable, Tcl_DeleteHashTable, Tcl_CreateHashEntry, Tcl_DeleteHashEntry, Tcl_FindHashEn-
try, Tcl_GetHashValue, Tcl_SetHashValue, Tcl_GetHashKey, Tcl_FirstHashEntry, Tcl_NextHashEntry,
Tcl_HashStats — procedures to manage hash tables

SYNOPSIS

#include <tclHash.h>
Tcl_InitHashTable(tablePtr, keyType)
Tcl_DeleteHashTable(tablePtr)

Tcl_HashEntry *

Tcl_CreateHashEntry(tablePtr, key, newPtr)

Tcl_DeleteHashEntry(entryPtr)

Tcl_HashEntry *
Tcl_FindHashEntry(tablePtr, key)

ClientData
Tcl_GetHashValue(entryPtr)

Tcl_SetHashValue(entryPtr, value)

char *
Tcl_GetHashKey(tablePtr, entryPtr)

Tcl_HashEntry *
Tcl_FirstHashEntry(tablePtr, searchPtr)

Tcl_HashEntry *
Tcl_NextHashEntry(searchPtr)

ARGUMENTS

char *

Tcl_HashStats(tablePtr)
Tcl_HashTable *tablePtr (in)
int keyType (in)
char *key (in)
int * newPtr (out)
Tcl_HashEntry *entryPtr (in)
ClientData value (in)

Address of hash table structure (for all procedures but
Tcl_InitHashTable, this must have been initialized by previ-
ous call to Tcl_InitHashTable).

Kind of keys to use for new hash table. Must be either
TCL_STRING_KEYS, TCL_ONE_WORD_KEYS, or an inte-
ger value greater than 1.

Key to use for probe into table. Exact form depends on
keyType used to create table.

The word at *newPtr is set to 1 if a new entry was created and
0 if there was already an entry for key.

Pointer to hash table entry.

New value to assign to hash table entry. Need not have type
ClientData, but must fit in same space as ClientData.




Tcl_Hash(3) Tcl_Hash(3)

Tcl_HashSearch  *searchPtr  (in) Pointer to record to use to keep track of progress in enumerat-
ing all the entries in a hash table.

DESCRIPTION
A hash table consists of zero or more entries, each consisting of a key and a value. Given the key for an
entry, the hashing routines can very quickly locate the entry, and hence its value. There may be at most one
entry in a hash table with a particular key, but many entries may have the same value. Keys can take one of
three forms: strings, one-word values, or integer arrays. All of the keys in a given table have the same
form, which is specified when the table is initialized.

The value of a hash table entry can be anything that fits in the same space as a “char *” pointer. Values for
hash table entries are managed entirely by clients, not by the hash module itself. Typically each entry’s
value is a pointer to a data structure managed by client code.

Hash tables grow gracefully as the number of entries increases, so that there are always less than three
entries per hash bucket, on average. This allows for fast lookups regardless of the number of entries in a
table.

Tcl_InitHashTable initializes a structure that describes a new hash table. The space for the structure is
provided by the caller, not by the hash module. The value of keyType indicates what kinds of keys will be
used for all entries in the table. KeyType must have one of the following values:

TCL_STRING_KEYS Keys are null-terminated ASCII strings. They are passed to hashing rou-
tines using the address of the first character of the string.

TCL_ONE_WORD_KEYS Keys are single-word values; they are passed to hashing routines and stored
in hash table entries as ““char *”” values. The pointer value is the key; it
need not (and usually doesn’t) actually point to a string.

other If keyTypeis not TCL_STRING_KEYS or TCL_ONE_WORD_KEYS, then
it must be an integer value greater than 1. In this case the keys will be
arrays of “int” values, where keyType gives the number of ints in each key.
This allows structures to be used as keys. All keys must have the same size.
Array keys are passed into hashing functions using the address of the first
int in the array.

Tcl_DeleteHashTable deletes all of the entries in a hash table and frees up the memory associated with the
table’s bucket array and entries. It does not free the actual table structure (pointed to by tablePtr), since
that memory is assumed to be managed by the client. Tcl_DeleteHashTable also does not free or other-
wise manipulate the values of the hash table entries. If the entry values point to dynamically-allocated
memory, then it is the client’s responsibility to free these structures before deleting the table.

Tcl_CreateHashEntry locates the entry corresponding to a particular key, creating a new entry in the table
if there wasn’t already one with the given key. If an entry already existed with the given key then * newPtr
is set to zero. If a new entry was created, then *newPtr is set to a non-zero value and the value of the new
entry will be set to zero. The return value from Tcl_CreateHashEntry is a pointer to the entry, which may
be used to retrieve and modify the entry’s value or to delete the entry from the table.

Tcl_DeleteHashEntry will remove an existing entry from a table. The memory associated with the entry
itself will be freed, but the client is responsible for any cleanup associated with the entry’s value, such as
freeing a structure that it points to.

Tcl_FindHashEntry is similar to Tcl_CreateHashEntry except that it doesn’t create a new entry if the
key doesn’t exist; instead, it returns NULL as result.

Tcl_GetHashValue and Tcl_SetHashValue are used to read and write an entry’s value, respectively. Val-
ues are stored and retrieved as type “ClientData”, which is large enough to hold a pointer value. On almost
all machines this is large enough to hold an integer value too.



Tcl_Hash(3) Tcl_Hash(3)

Tcl_GetHashKey returns the key for a given hash table entry, either as a pointer to a string, a one-word
(““char *”") key, or as a pointer to the first word of an array of integers, depending on the keyType used to
create a hash table. In all cases Tcl_GetHashKey returns a result with type *““char *””. When the key is a
string or array, the result of Tcl_GetHashKey points to information in the table entry; this information will
remain valid until the entry is deleted or its table is deleted.

Tcl_FirstHashEntry and Tcl_NextHashEntry may be used to scan all of the entries in a hash table. A
structure of type “Tcl_HashSearch™, provided by the client, is used to keep track of progress through the
table. Tcl_FirstHashEntry initializes the search record and returns the first entry in the table (or NULL if
the table is empty). Each susequent call to Tcl_NextHashEntry returns the next entry in the table or
NULL if the end of the table has been reached. A call to Tcl_FirstHashEntry followed by calls to
Tcl_NextHashEntry will return each of the entries in the table exactly once, in an arbitrary order. It is
unadvisable to modify the structure of the table, e.g. by creating or deleting entries, while the search is in
progress.

Tcl_HashStats returns a dynamically-allocated string with overall information about a hash table, such as
the number of entries it contains, the number of buckets in its hash array, and the utilization of the buckets.
It is the caller’s responsibility to free the result string by passing it to free.

The header file tclHash.h defines the actual data structures used to implement hash tables. This is neces-
sary so that clients can allocate Tcl_HashTable structures and so that macros can be used to read and write
the values of entries. However, users of the hashing routines should never refer directly to any of the fields
of any of the hash-related data structures; use the procedures and macros defined here.

KEYWORDS
hash table, key, lookup, search, value



