
Tcl_Interp(3) Tcl_Interp(3)

NAME
Tcl_Interp − client-visible fields of interpreter structures

SYNOPSIS
#include <tcl.h>

typedef struct {
char *result;
Tcl_FreeProc *freeProc;




int errorLine;
} Tcl_Interp;

typedef void Tcl_FreeProc(char *blockPtr);



DESCRIPTION
The Tcl_CreateInterp procedure returns a pointer to a Tcl_Interp structure. This pointer is then passed
into other Tcl procedures to process commands in the interpreter and perform other operations on the inter-
preter. Interpreter structures contain many many fields that are used by Tcl, but only three that may be
accessed by clients: result, freeProc, and errorLine.

The result and freeProc fields are used to return results or error messages from commands. This informa-
tion is returned by command procedures back to Tcl_Eval, and by Tcl_Eval back to its callers. The result
field points to the string that represents the result or error message, and the freeProc field tells how to dis-
pose of the storage for the string when it isn’t needed anymore. The easiest way for command procedures
to manipulate these fields is to call procedures like Tcl_SetResult or Tcl_AppendResult; they will hide
all the details of managing the fields. The description below is for those procedures that manipulate the
fields directly.

Whenever a command procedure returns, it must ensure that the result field of its interpreter points to the
string being returned by the command. The result field must always point to a valid string. If a command
wishes to return no result then interp->result should point to an empty string. Normally, results are
assumed to be statically allocated, which means that the contents will not change before the next time
Tcl_Eval is called or some other command procedure is invoked. In this case, the freeProc field must be
zero. Alternatively, a command procedure may dynamically allocate its return value (e.g. using malloc)
and store a pointer to it in interp->result. In this case, the command procedure must also set interp->freeP-
roc to the address of a procedure that can free the value (usually free). If interp->freeProc is non-zero,
then Tcl will call freeProc to free the space pointed to by interp->result before it invokes the next com-
mand. If a client procedure overwrites interp->result when interp->freeProc is non-zero, then it is respon-
sible for calling freeProc to free the old interp->result (the Tcl_FreeResult macro should be used for this
purpose).

Fr eeProc should have arguments and result that match the Tcl_FreeProc declaration above: it receives a
single argument which is a pointer to the result value to free. In most applications free is the only non-zero
value ever used for freeProc. Howev er, an application may store a different procedure address in freeProc
in order to use an alternate memory allocator or in order to do other cleanup when the result memory is
freed.

As part of processing each command, Tcl_Eval initializes interp->result and interp->freeProc just before
calling the command procedure for the command. The freeProc field will be initialized to zero, and
interp->result will point to an empty string. Commands that do not return any value can simply leave the






































fields alone. Furthermore, the empty string pointed to by result is actually part of an array of
TCL_RESULT_SIZE characters (approximately 200). If a command wishes to return a short string, it can
simply copy it to the area pointed to by interp->result. Or, it can use the sprintf procedure to generate a
short result string at the location pointed to by interp->result.

1



Tcl_Interp(3) Tcl_Interp(3)

It is a general convention in Tcl-based applications that the result of an interpreter is normally in the initial-
ized state described in the previous paragraph. Procedures that manipulate an interpreter’s result (e.g. by
returning an error) will generally assume that the result has been initialized when the procedure is called. If
such a procedure is to be called after the result has been changed, then Tcl_ResetResult should be called
first to reset the result to its initialized state.

The errorLine field is valid only after Tcl_Eval returns a TCL_ERROR return code. In this situation the
errorLine field identifies the line number of the command being executed when the error occurred. The line
numbers are relative to the command being executed: 1 means the first line of the command passed to
Tcl_Eval, 2 means the second line, and so on. The errorLine field is typically used in conjunction with
Tcl_AddErrorInfo to report information about where an error occurred. ErrorLine should not normally be
modified except by Tcl_Eval.

KEYWORDS
free, initialized, interpreter, malloc, result

2


