
Tcl_SetResult(3) Tcl_SetResult(3)

NAME
Tcl_SetResult, Tcl_AppendResult, Tcl_AppendElement, Tcl_ResetResult − manipulate Tcl result string

SYNOPSIS
#include <tcl.h>

Tcl_SetResult(interp, string, freeProc)



Tcl_AppendResult(interp, string, string, ... , (char *) NULL)

Tcl_AppendElement(interp, string, noSep)

Tcl_ResetResult(interp)

Tcl_FreeResult(interp)








ARGUMENTS
Tcl_Interp *interp (out) Interpreter whose result is to be modified.

char *string (in) String value to become result for interp or to be appended to exist-
ing result.

Tcl_FreeProc freeProc (in) Address of procedure to call to release storage at string, or
TCL_STATIC, TCL_DYNAMIC, or TCL_VOLATILE.

int noSep (in) If non-zero then don’t output a space character before this element,






ev en if the element isn’t the first thing in the result string.

DESCRIPTION
The procedures described here are utilities for setting the result/error string in a Tcl interpreter.

Tcl_SetResult arranges for string to be the return string for the current Tcl command in interp, replacing
any existing result. If freeProc is TCL_STATIC it means that string refers to an area of static storage that
is guaranteed not to be modified until at least the next call to Tcl_Eval. If freeProc is TCL_DYNAMIC it
means that string was allocated with a call to malloc() and is now the property of the Tcl system.
Tcl_SetResult will arrange for the string’s storage to be released by calling free() when it is no longer
needed. If freeProc is TCL_VOLATILE it means that string points to an area of memory that is likely to
be overwritten when Tcl_SetResult returns (e.g. it points to something in a stack frame). In this case
Tcl_SetResult will make a copy of the string in dynamically allocated storage and arrange for the copy to
be the return string for the current Tcl command.

If freeProc isn’t one of the values TCL_STATIC, TCL_DYNAMIC, and TCL_VOLATILE, then it is the
address of a procedure that Tcl should call to free the string. This allows applications to use non-standard
storage allocators. When Tcl no longer needs the storage for the string, it will call freeProc. Fr eeProc
should have arguments and result that match the type Tcl_FreeProc:

typedef void Tcl_FreeProc(char *blockPtr);





















When freeProc is called, its blockPtr will be set to the value of string passed to Tcl_SetResult.

If string is NULL, then freeProc is ignored and Tcl_SetResult re-initializes interp’s result to point to the
pre-allocated result area, with an empty string in the result area.

If Tcl_SetResult is called at a time when interp holds a result, Tcl_SetResult does whatever is necessary



to dispose of the old result (see the Tcl_Interp manual entry for details on this).

Tcl_AppendResult makes it easy to build up Tcl results in pieces. It takes each of its string arguments and

1



Tcl_SetResult(3) Tcl_SetResult(3)

appends them in order to the current result associated with interp. If the result is in its initialized empty
state (e.g. a command procedure was just invoked or Tcl_ResetResult was just called), then Tcl_Appen-





dResult sets the result to the concatenation of its string arguments. Tcl_AppendResult may be called
repeatedly as additional pieces of the result are produced. Tcl_AppendResult takes care of all the storage
management issues associated with managing interp’s result, such as allocating a larger result area if neces-
sary. Any number of string arguments may be passed in a single call; the last argument in the list must be
a NULL pointer.

Tcl_AppendElement is similar to Tcl_AppendResult in that it allows results to be built up in pieces.
However, Tcl_AppendElement takes only a single string argument and it appends that argument to the
current result as a proper Tcl list element. Tcl_AppendElement adds backslashes or braces if necessary to
ensure that interp’s result can be parsed as a list and that string will be extracted as a single element. Under
normal conditions, Tcl_AppendElement will add a space character to interp’s result just before adding the
new list element, so that the list elements in the result are properly separated. However, if interp’s result is
empty when Tcl_AppendElement is called, or if the noSep argument is 1, then no space is added.

Tcl_ResetResult clears the result for interp, freeing the memory associated with it if the current result was
dynamically allocated. It leaves the result in its normal initialized state with interp->result pointing to a
static buffer containing TCL_RESULT_SIZE characters, of which the first character is zero. Tcl_Rese-
tResult also clears the error state managed by Tcl_AddErrorInfo and Tcl_SetErrorCode.

Tcl_FreeResult is a macro that performs part of the work of Tcl_ResetResult. It frees up the memory
associated with interp’s result and sets interp->freeProc to zero, but it doesn’t change interp->result or
clear error state. Tcl_FreeResult is most commonly used when a procedure is about to replace one result




















value with another.

SEE ALSO
Tcl_AddErrorInfo, Tcl_SetErrorCode, Tcl_Interp

KEYWORDS
append, command, element, list, result, return value, interpreter

2


